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Abstract

This paper addresses two problems lying at the intersectionof geometric analysis and theoretical
computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate
distance oracles for large distortion. We introduce the notion of Ramsey partitions of a finite metric
space, and show that the existence of good Ramsey partitionsimplies a solution to the metric Ramsey
problem for large distortion (a.k.a. the non-linear version of the isomorphic Dvoretzky theorem, as
introduced by Bourgain, Figiel, and Milman in [8]). We then proceed to construct optimal Ramsey
partitions, and use them to show that for everyε ∈ (0, 1), anyn-point metric space has a subset of size
n1−ε which embeds into Hilbert space with distortionO(1/ε). This result is best possible and improves
part of the metric Ramsey theorem of Bartal, Linial, Mendel and Naor [5], in addition to considerably
simplifying its proof. We use our new Ramsey partitions to design the best known approximate distance
oracles when the distortion is large, closing a gap left openby Thorup and Zwick in [31]. Namely, we
show that for anyn point metric spaceX, andk ≥ 1, there exists anO(k)-approximate distance oracle
whose storage requirement isO

(
n1+1/k

)
, and whose query time is a universal constant. We also discuss

applications of Ramsey partitions to various other geometric data structure problems, such as the design
of efficient data structures for approximate ranking.
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1 Introduction

Motivated by the search for a non-linear version of Dvoretzky’s theorem, Bourgain, Figiel and Milman [8]
posed the following problem, which is known today as themetric Ramsey problem: Given a target distortion
α > 1 and an integern, what is the largestk such thatany n-point metric space has a subset of sizek
which embeds into Hilbert space with distortionα? (Recall that a metric space (X, dX) is said to embed
into Hilbert space with distortionα if there exists a mappingf : X → L2 such that for everyx, y ∈ X, we
havedX(x, y) ≤ ‖ f (x) − f (y)‖2 ≤ αdX(x, y)). This problem has since been investigated by several authors,
motivated in part by the discovery of its applications to online algorithms — we refer to [5] for a discussion
of the history and applications of the metric Ramsey problem.

The most recent work on the metric Ramsey problem is due to Bartal, Linial, Mendel and Naor [5], who
obtained various nearly optimal upper and lower bounds in several contexts. Among the results in [5] is the
following theorem which deals with the case of large distortion: For everyε ∈ (0, 1), anyn-point metric
space has a subset of sizen1−ε which embeds into an ultrametric with distortionO

(
log(2/ε)

ε

)
(recall that an

ultrametric (X, dX) is a metric space satisfying for everyx, y, z ∈ X, dX(x, y) ≤ max{dX(x, z), dX(y, z)}). Since
ultrametrics embed isometrically into Hilbert space, thisis indeed a metric Ramsey theorem. Moreover, it
was shown in [5] that this result is optimal up to the log(2/ε) factor, i.e. there exists arbitrarily largen-point
metric spaces any subset of which of sizen1−ε incurs distortionΩ(1/ε) in any embedding into Hilbert space.
The main result of this paper closes this gap:

Theorem 1.1. Let (X, dX) be an n-point metric space andε ∈ (0, 1). Then there exists a subset Y⊆ X with
|Y| ≥ n1−ε such that(Y, dX) is equivalent to an ultrametric with distortion at most128

ε
.

In the four years that elapsed since our work on [5] there has been remarkable development in the struc-
ture theory of finite metric spaces. In particular, the theory of random partitions of metric spaces has been
considerably refined, and was shown to have numerous applications in mathematics and computer science
(see for example [17, 25, 24, 1] and the references therein).The starting point of the present paper was
our attempt to revisit the metric Ramsey problem using random partitions. It turns out that this approach
can indeed be used to resolve the metric Ramsey problem for large distortion, though it requires the in-
troduction of a new kind of random partition, an improved “padding inequality” for known partitions, and
a novel application of the random partition method in the setting of Ramsey problems. In Section 2 we
introduce the notion of Ramsey partitions, and show how theycan be used to address the metric Ramsey
problem. We then proceed in Section 3 to construct optimal Ramsey partitions, yielding Theorem 1.1. Our
construction is inspired in part by Bartal’s probabilisticembedding into trees [4], and is based on a random
partition due to Calinescu, Karloff and Rabani [9], with an improved analysis which strengthensthe work
of Fakcharoenphol, Rao and Talwar [17]. In particular, our proof of Theorem 1.1 is self contained, and con-
siderably simpler than the proof of the result from [5] quoted above. Nevertheless, the construction of [5]
is deterministic, while our proof of Theorem 1.1 is probabilistic. Moreover, we do not see a simple way
to use our new approach to simplify the proof of another main result of [5], namely the phase transition at
distortionα = 2 (we refer to [5] for details, as this result will not be used here). The results of [5] which
were used crucially in our work [27] on the metric version of Milman’s Quotient of Subspace theorem are
also not covered by the present paper.

Algorithmic applications to the construction of proximity data structures. The main algorithmic ap-
plication of the metric Ramsey theorem in [5] is to obtain thebest known lower bounds on the competitive
ratio of the randomizedk-server problem. We refer to [5] and the references therein for more information

1



www.manaraa.com

on this topic, as Theorem 1.1 does not yield improvedk-server lower bounds. However, Ramsey partitions
are useful to obtain positive results, and not only algorithmic lower bounds, which we now describe.

A finite metric space can be thought of as given by itsn × n distance matrix. However, in many algo-
rithmic contexts it is worthwhile to preprocess this data sothat we store significantly less thann2 numbers,
and still be able to quickly find outapproximatelythe distance between two query points. In other words,
quoting Thorup and Zwick [31], “In most applications we are not really interested inall distances, we just
want the ability to retrieve them quickly, if needed”. The need for such “compact” representation of metrics
also occurs naturally in mathematics; for example the methods developed in theroetical computer science
(specifically [11, 20]) are a key tool in the recent work of Fefferman and Klartag [18] on the extension of
Cm functions defined onn points inRd to all ofRd.

An influential compact representation of metrics used in theoretical computer science is theapproximate
distance oracle[3, 14, 31, 20]. Stated formally, a (P,S,Q,D)-approximate distance oracle on a finite metric
space (X, dX) is a data structure that takes expected timeP to preprocess from the given distance matrix,
takes spaceS to store, and given two query pointsx, y ∈ X, computes in timeQ a numberE(x, y) satisfying
dX(x, y) ≤ E(x, y) ≤ D·dX(x, y). Thus the distance matrix itself is a (P = O(1),S = O(n2),Q = O(1),D = 1)-
approximate distance oracle, but clearly the interest is incompactdata structures in the sense thatS = o(n2).
In what follows we will depart from the above somewhat cumbersome terminology, and simply discuss
D-approximate distance oracles (emphasizing the distortion D), and state in words the values of the other
relevant parameters (namely the preprocessing time, storage space and query time).

An important paper of Thorup and Zwick [31] constructs the best known approximate distance oracles.
Namely, they show that for every integerk, everyn-point metric space has a (2k − 1)-approximate distance
oracle which can be preprocessed on timeO

(
n2+1/k

)
, requires storageO

(
k · n1+1/k

)
, and has query time

O(k). Moreover, it is shown in [31] that this distortion/storage tradeoff is almost tight: A widely believed
combinatorial conjecture of Erdős [16] is shown in [31] (see also [26]) to imply that any data structure
supporting approximate distance queries with distortion at most 2k − 1 must be of size at leastΩ

(
n1+1/k

)

bits. Since for large values ofk the query time of the Thorup-Zwick oracle is large, the problem remained
whether there exist good approximate distance oracles whose query time is a constant independent of the
distortion (i.e., in a sense, true “oracles”). Here we use Ramsey partitions to answer this question positively:
For any distortion, every metric space admits an approximate distance oracle with preprocessing time and
space almost as good as the Thorup-Zwick oracle (in fact, fordistortions larger thanΩ(logn/ log logn) our
storage space is slightly better), but whose query time is a universal constant. Stated formally, we prove the
following theorem:

Theorem 1.2. For any k> 1, every n-point metric space(X, dX) admits a O(k)-approximate distance oracle
whose preprocessing time is O

(
n2+1/k logn

)
, requiring storage space O

(
n1+1/k

)
, and whose query time is a

universal constant.

Another application of Ramsey partitions is to the construction of data structures forapproximate rank-
ing. This problem is motivated in part by web search and the analysis of social networks, in addition to being
a natural extension of the ubiquitous approximate nearest neighbor search problem (see [2, 23, 13] and the
references therein). In the approximate nearest neighbor search problem we are givenc > 1, a metric space
(X, dX), and a subsetY ⊆ X. The goal is to preprocess the data pointsY so that given a query pointx ∈ X \Y
we quickly return a pointy ∈ Y which is ac-approximate nearest neighbor ofx, i.e. dX(x, y) ≤ cdX(x,Y).
More generally, one might want to find the second closest point to x in Y, and so forth (this problem has been
studied extensively in computational geometry, see for example [2]). In other words, by ordering the points
in X in increasing distance fromx ∈ X we induce aproximity rankingof the points ofX. Each point ofX
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induces a different ranking of this type, and computing it efficiently is a natural generalization of the nearest
neighbor problem. Using our new Ramsey partitions we designthe following data structure for solving this
problem approximately:

Theorem 1.3. Fix k > 1, and an n-point metric space(X, dX). Then there exist a data structure which can be
preprocessed in time O

(
kn2+1/k logn

)
, uses only O

(
kn1+1/k

)
storage space, and supports the following type

of queries: Given x∈ X, have “fast access” to a permutation ofπ(x) of X satisfying for every1 ≤ i < j ≤ n,
dX

(
x, π(x)(i)

)
≤ O(k) · dX

(
x, π(x)( j)

)
. By “fast access” toπ(x) we mean that we can do the following:

1. Given a point x∈ X, and i∈ {1, . . . , n}, findπ(x)(i) in constant time.
2. For any x, u ∈ X, compute j∈ {1, . . . , n} such thatπ(x)( j) = u in constant time.

As is clear from the above discussion, the present paper is a combination of results in pure mathematics,
as well as the theory of data structures. This exemplifies theclose interplay between geometry and computer
science, which has become a major driving force in modern research in these areas. Thus, this paper “caters”
to two different communities, and we put effort into making it accessible to both.

2 Ramsey partitions and their equivalence to the metric Ramsey problem

Let (X, dX) be a metric space. In what follows forx ∈ X andr ≥ 0 we letBX(x, r) = {y ∈ X : dX(x, y) ≤ r} be
theclosedball of radiusr centered atx. Given a partitionP of X andx ∈ X we denote byP(x) the unique
element ofP containingx. For∆ > 0 we say thatP is ∆-bounded if for everyC ∈ P, diam(C) ≤ ∆. A
partition treeof X is a sequence of partitions{Pk}∞k=0 of X such thatP0 = {X}, for all k ≥ 0 the partitionPk

is 8−k diam(X)-bounded, andPk+1 is a refinement ofPk (the choice of 8 as the base of the exponent in this
definition is convenient, but does not play a crucial role here). Forβ, γ > 0 we shall say that a distribution
Pr over partition trees{Pk}∞k=0 of X is completelyβ-padded with exponentγ if for every x ∈ X,

Pr
[
∀ k ∈ N, BX

(
x, β · 8−k diam(X)

)
⊆Pk(x)

]
≥ |X|−γ.

We shall call such distributions over partition treesRamsey partitions.
The following lemma shows that the existence of good Ramsey partitions implies a solution to the metric

Ramsey problem. In fact, it is possible to prove the conversedirection, i.e. that the metric Ramsey theorem
implies the existence of good Ramsey partitions (with appropriate dependence on the various parameters).
We defer the proof of this implication to Appendix B as it willnot be used in this paper due to the fact that
in Section 3 we will construct directly optimal Ramsey partitions.

Lemma 2.1. Let (X, dX) be an n-point metric space which admits a distribution over partition trees which
is completelyβ-padded with exponentγ. Then there exists a subset Y⊆ X with |Y| ≥ n1−γ which is8/β
equivalent to an ultrametric.

Proof. We may assume without loss of generality that diam(X) = 1. Let {Pk}∞k=0 be a distribution over
partition trees ofX which is completelyβ-padded with exponentγ. We define an ultrametricρ on X as
follows. For x, y ∈ X let k be the largest integer for whichPk(x) = Pk(y), and setρ(x, y) = 8−k. It is
straightforward to check thatρ is indeed an ultrametric. Consider the random subsetY ⊆ X given by

Y =
{
x ∈ X : ∀ k ∈ N, BX

(
x, β · 8−k

)
⊆Pk(x)

}
.
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Then
E|Y| =

∑

x∈X
Pr

[
∀ k ∈ N, BX

(
x, β · 8−k diam(X)

)
⊆Pk(x)

]
≥ n1−γ.

We can therefore chooseY ⊆ X with |Y| ≥ n1−γ such that for allx ∈ Y and allk ≥ 0 we haveBX

(
x, β · 8−k

)
⊆

Pk(x). Fix x, y ∈ X, and let k be the largest integer for whichPk(x) = Pk(y). Then dX(x, y) ≤
diam(Pk(x)) ≤ 8−k = ρ(x, y). On the other hand, ifx ∈ X andy ∈ Y then, sincePk+1(x) , Pk+1(y),
the choice ofY implies thatx < BX

(
y, β · 8−k−1

)
. ThusdX(x, y) > β · 8−k−1 =

β

8ρ(x, y). It follows that the
metricsdX andρ are equivalent onY with distortion 8/β. �

3 Constructing optimal Ramsey partitions

The following lemma gives improved bounds on the “padding probability” of a distribution over partitions
which was discovered by Calinescu, Karloff and Rabani in [9].

Lemma 3.1. Let (X, dX) be a finite metric space. Then for every∆ > 0 there exits a distributionPr over
∆-bounded partitions of X such that for every0 < t ≤ ∆/8 and every x∈ X,

Pr [BX (x, t) ⊆P(x)] ≥
(
|BX(x,∆/8)|
|BX(x,∆)|

) 16t
∆

. (1)

Remark 3.1. The distribution over partitions used in the proof of Lemma 3.1 is precisely the distribution
introduced by Calinescu, Karloff and Rabani in [9]. In [17] Fakcharoenphol, Rao and Talwar proved the
following estimate for the same distribution

Pr [BX (x, t) ⊆P(x)] ≥ 1−O

(
t
∆

log
|BX(x,∆)|
|BX(x,∆/8)|

)
. (2)

Clearly the bound (1) is stronger than the bound (2), and thisimprovement is crucial for our proof of
Theorem 1.1. The use of the “local ratio of balls” (or “local growth”) in the estimate (2) of Fakcharoenphol,
Rao and Talwar was a fundamental breakthrough, which, apartfrom their striking application in [17], has
since found several applications in mathematics and computer science (see [25, 24, 1]).

Proof of Lemma 3.1.Write X = {x1, . . . , xn}. Let R be chosen uniformly at random from the interval
[∆/4,∆/2], and letπ be a permutation of{1, . . . , n} chosen uniformly at random from all such permuta-
tions (here, and in what follows,R andπ are independent). DefineC1 ≔ BX

(
xπ(1),R

)
and inductively for

2 ≤ j ≤ n,

C j ≔ BX

(
xπ( j),R

)
\

j−1⋃

i=1

Ci .

Finally we letP ≔ {C1, . . . ,Cn} \ {∅}. ClearlyP is a (random)∆-bounded partition onX.
For everyr ∈ [∆/4,∆/2],

Pr [BX (x, t) ⊆P(x)|R= r] ≥ |BX(x, r − t)|
|BX(x, r + t)| . (3)

Indeed, ifR = r, then the triangle inequality implies that if in the random order induced by the partitionπ
on the points of the ballBX(x, r + t) the minimal element is from the ballBX(x, r − t), thenBX (x, t) ⊆P(x)
(draw a picture). This event happens with probability|BX(x,r−t)|

|BX(x,r+t)| , implying (3).

4
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Write ∆8t = k+ β, whereβ ∈ [0, 1) andk is a positive integer. Then

Pr [BX (x, t) ⊆P(x)] ≥ 4
∆

∫ ∆/2

∆/4

|BX(x, r − t)|
|BX(x, r + t)|

dr (4)

=
4
∆

k−1∑

j=0

∫ ∆
4+2( j+1)t

∆
4+2 jt

|BX(x, r − t)|
|BX(x, r + t)|dr +

4
∆

∫ ∆
2

∆
4+2kt

|BX(x, r − t)|
|BX(x, r + t)|dr

≥ 4
∆

∫ 2t

0

k−1∑

j=0

∣∣∣∣BX

(
x, ∆4 + 2 jt + s− t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆4 + 2 jt + s+ t

)∣∣∣∣
ds+

4
∆

(
∆

4
− 2kt

)
∣∣∣∣BX

(
x, ∆4 + 2kt − t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆2 + t

)∣∣∣∣

≥ 4k
∆

∫ 2t

0



k−1∏

j=0

∣∣∣∣BX

(
x, ∆4 + 2 jt + s− t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆4 + 2 jt + s+ t

)∣∣∣∣



1
k

ds+

(
1− 8kt
∆

)
∣∣∣∣BX

(
x, ∆4 + 2kt− t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆2 + t

)∣∣∣∣
(5)

=
4k
∆
·
∫ 2t

0



∣∣∣∣BX

(
x, ∆4 + s− t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆4 + 2t (k− 1) + s+ t

)∣∣∣∣



1
k

ds+

(
1− 8kt
∆

)
∣∣∣∣BX

(
x, ∆4 + 2kt− t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆2 + t

)∣∣∣∣

≥ 8kt
∆



∣∣∣∣BX

(
x, ∆4 − t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆4 + 2kt + t

)∣∣∣∣



1
k

+

(
1− 8kt

∆

)
∣∣∣∣BX

(
x, ∆4 + 2kt − t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆2 + t

)∣∣∣∣

≥



∣∣∣∣BX

(
x, ∆4 − t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆4 + 2kt+ t

)∣∣∣∣



8t
∆

·



∣∣∣∣BX

(
x, ∆4 + 2kt − t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆2 + t

)∣∣∣∣



1− 8kt
∆

(6)

=



∣∣∣∣BX

(
x, ∆4 − t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆4 + 2kt+ t

)∣∣∣∣
·

∣∣∣∣BX

(
x, ∆4 + 2kt − t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆2 + t

)∣∣∣∣



8t
∆

·



∣∣∣∣BX

(
x, ∆4 + 2kt− t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆2 + t

)∣∣∣∣



8t
∆

(
∆
8t−k−1

)

≥



∣∣∣∣BX

(
x, ∆4 − t

)∣∣∣∣
∣∣∣∣BX

(
x, ∆2 + t

)∣∣∣∣



16t
∆

, (7)

where in (4) we used (3), in (5) we used the arithmetic mean/geometric mean inequality, in (6) we used the
elementary inequalityθa+ (1− θ)b ≥ aθb1−θ, which holds for allθ ∈ [0, 1] anda, b ≥ 0, and in (7) we used
the fact that∆8t − k− 1 is negative. �

The following theorem, in conjunction with Lemma 2.1, implies Theorem 1.1.

Theorem 3.2. For everyα > 1, every finite metric space(X, dX) admits a completely1/α padded random
partition tree with exponent16/α.

Proof. Fix α > 1. Without loss of generality we may assume that diam(X) = 1. We construct a partition
tree{Ek}∞k=0 of X as follows. SetE0 = {X}. Having definedEk we letPk+1 be a partition as in Lemma 3.1
with ∆ = 8−k and t = ∆/α (the random partitionPk+1 is chosen independently of the random partitions
P1, . . . ,Pk). DefineEk+1 to be the common refinement ofEk andPk+1, i.e.

Ek+1 ≔ {C ∩C′ : C ∈ Ek, C′ ∈Pk+1}.

5
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The construction implies that for everyx ∈ X and everyk ≥ 0 we haveEk+1(x) = Ek(x) ∩Pk+1(x). Thus
one proves inductively that

∀ k ∈ N, BX

(
x,

8−k

α

)
⊆Pk(x) =⇒ ∀ k ∈ N, BX

(
x,

8−k

α

)
⊆ Ek(x).

From Lemma 3.1 and the independence of{Pk}∞k=1 it follows that

Pr

[
∀ k ∈ N, BX

(
x,

8−k

α

)
⊆ Ek(x)

]
≥ Pr

[
∀ k ∈ N, BX

(
x,

8−k

α

)
⊆Pk(x)

]

=

∞∏

k=1

Pr

[
BX

(
x,

8−k

α

)
⊆Pk(x)

]

≥
∞∏

k=1

[
|BX(x, 8−k−1)|
|BX(x, 8−k)

] 16
α

= |BX(x, 1/8)|−
16
α ≥ |X|−

16
α .

�

4 Applications to proximity data structures

In this section we show how Theorem 3.2 can be applied to the design of various proximity data structures,
which are listed below. Before doing so we shall recall some standard facts about tree representations
of ultrametrics, all of which can be found in the discussion in [5]. Any finite ultrametric (X, ρ) can be
represented by a treeT = (V,E) with labels∆ : V → (0,∞), whose leaves areX, and such that ifu, v ∈ V
andv is a child ofu then∆(v) ≤ ∆(u). Given x, y ∈ X we then haveρ(x, y) = ∆ (lca(x, y)), wherelca(x, y)
is the least common ancestor ofx andy in T. Fork ≥ 1 the labelled tree described above is called ak-HST
(hierarchically well separated tree) if its labels satisfythe stronger decay condition∆(v) ≤ ∆(u)

k wheneverv

is a child ofu. The treeT is called an exactk-HST if we actually have an equality∆(v) = ∆(u)
k wheneverv

is a child ofu. Lemma 3.5 in [5] implies any 1-HST withn-leaves isk-equivalent to ak-HST which can be
computed in timeO(n).

We start by proving several structural lemmas which will play a crucial role in the design of our new
data structures.

Lemma 4.1 (Extending ultrametrics). Let (X, dX) be a finite metric space, andα ≥ 1. Fix ∅ , Y ⊆ X, and
assume that there exits an ultrametricρ on Y such that for every x, y ∈ Y, dX(x, y) ≤ ρ(x, y) ≤ αdX(x, y).
Then there exists an ultrametric̃ρ defined on all of X such that for every x, y ∈ X we have dX(x, y) ≤ ρ̃(x, y),
and if x∈ X and y∈ Y theñρ(x, y) ≤ 6αdX(x, y).

Proof. Let T = (V,E) be the 1-HST representation ofρ, with labels∆ : V → (0,∞). In other words, the
leaves ofT areY, and for everyx, y ∈ Y we have∆(lca(x, y)) = ρ(x, y). It will be convenient to augmentT
by adding an incoming edge to the root with∆(parent(root))= ∞. This clearly does not change the induced
metric onY. For everyx ∈ X \ Y let y ∈ Y be its closest point inY, i.e. dX(x, y) = dX(x,Y). Let u be the
least ancestor ofy for which∆(u) ≥ dX(x, y) (such au must exist because we added the incoming edge to the
root). Letv be the child ofu along the path connectingu andy. We add a vertexw on the edge{u, v} whose

6
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label isdX(x, y), and connectx to T as a child ofw. The resulting tree is clearly still a 1-HST. Repeating this
procedure for everyx ∈ X \ Y we obtain a 1-HST̃T whose leaves areX. Denote the labels oñT by ∆̃.

Fix x, y ∈ X, and letx′, y′ ∈ Y the nearest neighbors ofx, y (respectively) used in the above construction.
Then

∆̃
(
lcaT̃(x, y)

)
= max

{
∆̃

(
lcaT̃(x, x′)

)
, ∆̃

(
lcaT̃(y, y′)

)
, ∆̃

(
lcaT̃(x′, y′)

)}

≥ max
{
dX(x, x′), dX(y, y′), dX(x′, y′)

}

≥ dX(x, x′) + dX(y, y′) + dX(x′, y′)
3

≥ 1
3

dX(x, y). (8)

In the reverse direction, ifx ∈ X andy ∈ Y let x′ ∈ Y be the closest point inY to xused in the construction
of T̃. ThendX(x′, y) ≤ dX(x′, x) + dX(x, y) ≤ 2dX(x, y). If lcaT̃(y, x′) is an ancestor oflcaT̃(x, x′) then

∆̃
(
lcaT̃(x, y)

)
= ∆̃

(
lcaT̃(x′, y)

)
= ρ(x′, y) ≤ α · dX(x′, y) ≤ 2α · dX(x, y). (9)

If, on the other hand,lcaT̃(y, x′) is a descendant oflcaT̃(x, x′) then

∆̃
(
lcaT̃(x, y)

)
= ∆̃

(
lcaT̃(x, x′)

)
= dX(x, x′) ≤ dX(x, y). (10)

Scaling the labels of̃T by a factor of 3, the required result is a combination of (8), (9) and (10). �

The following lemma is a structural result on the existence of a certain distribution over decreasing
chains of subsets of a finite metric space. In what follows we shall call such a distribution astochastic
Ramsey chain.

Lemma 4.2 (Stochastic Ramsey chains). Let (X, dX) be an n-point metric space and k≥ 1. Then there
exists a distribution over decreasing sequences of subsetsX = X0 % X1 % X2 · · · % Xs = ∅ (s itself is a
random variable), such that for all p> −1/k,

E


s−1∑

j=0

|X j |p
 ≤

(
max

{
k

1+ pk
, 1

})
· np+1/k, (11)

and such that for each j∈ {1, . . . , s} there exists an ultrametricρ j on X satisfying for every x, y ∈ X,
ρ j(x, y) ≥ dX(x, y), and if x∈ X and y∈ X j−1 \ X j thenρ j(x, y) ≤ O(k) · dX(x, y).

Remark 4.1. In what follows we will only use the casesp ∈ {0, 1, 2} in Lemma 4.2. Observe that forp = 0,
(11) is simply the estimateEs≤ kn1/k.

Proof of Lemma 4.2.By the Theorem 3.2 and the proof of Lemma 2.1 there is a distribution over subsets
Y1 ⊆ X0 such thatE|Y1| ≥ n1−1/k and there exists an ultrametricρ1 on Y1 such that everyx, y ∈ Y1 satisfy
dX(x, y) ≤ ρ1(x, y) ≤ O(k) · dX(x, y). By Lemma 4.1 we may assume thatρ1 is defined on all ofX, for every
x, y ∈ X we haveρ1(x, y) ≥ dX(x, y), and ifx ∈ X andy ∈ Y1 thenρ1(x, y) ≤ O(k)·dX(x, y). DefineX1 = X0\Y1

and apply the same reasoning toX1, obtaining a random subsetY2 ⊆ X0\Y1 and an ultrametricρ2. Continuing
in this manner until we arrive at the empty set, we see that there are disjoint subsets,Y1, . . . ,Ys ⊆ X, and
for each j an ultrametricρ j on X, such that forx, y ∈ X we haveρ j(x, y) ≥ dX(x, y), and for x ∈ X,

7
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y ∈ Yj we haveρ j(x, y) ≤ O(k) · dX(x, y). Additionally, writing X j ≔ X \ ⋃ j
i=1 Yi, we have the estimate

E

[
|Yj |

∣∣∣∣Y1, . . . ,Yj−1

]
≥ |X j−1|1−1/k.

The proof of (11) is by induction onn. Forn = 1 the claim is obvious, and ifn > 1 then by the inductive
hypothesis

E


s−1∑

j=0

|X j |p
∣∣∣∣∣∣∣∣
Y1

 ≤ np +

(
max

{
k

1+ pk
, 1

})
· |X1|p+1/k

= np +

(
max

{
k

1+ pk
, 1

})
· np+1/k

(
1− |Y1|

n

)p+1/k

≤ np +

(
max

{
k

1+ pk
, 1

})
· np+1/k

(
1−

(
min

{
p+

1
k
, 1

})
· |Y1|

n

)

=

(
max

{
k

1+ pk
, 1

})
· np+1/k + np − np−1+1/k|Y1|.

Taking expectation with respect toY1 gives the required result. �

Remark 4.2. If one does not mind losing a factor of O(logn) in the construction time and storage of the
Ramsey chain, then an alternative to Lemma 4.2 is to randomlyand independently sample O

(
n1/k logn

)

ultrametrics from the Ramsey partitions.

Before passing to the description of our new data structures, we need to say a few words about the
algorithmic implementation of Lemma 4.2 (this will be the central preprocessing step in our constructions).
We should point out here that the computational model in which we will be working is the RAM model,
which is standard in the context of our type of data-structure problems (see for example [31]). In fact, we
can settle for weaker computational models such as the “Unitcost floating-point word RAM model” — a
detailed discussion of these issues can be found in Section 2.2. of [20].

The natural implementation of the Calinescu-Karloff-Rabani (CKR) random partition used in the proof
of Lemma 3.1 takesO

(
n2

)
time. Denote byΦ = Φ(X) the aspect ratio ofX, i.e. the diameter ofX divided

by the minimal positive distance inX. The construction of the distribution over partition treesin the proof of
Theorem 3.2 requires performingO(logΦ) such decompositions. This results inO

(
n2 logΦ

)
preprocessing

time to sample one partition tree from the distribution. Using a standard technique (described for example
in [20, Sections 3.2-3.3]), we dispense with the dependenceon the aspect ratio and obtain that the expected
preprocessing time of one partition tree isO

(
n2 logn

)
. Since the argument in [20] is presented in a slightly

different context, we shall briefly sketch it here.
We start by constructing an ultrametricρ on X, represented by an HSTH, such that for everyx, y ∈ X,

dX(x, y) ≤ ρ(x, y) ≤ ndX(x, y). The fact that such a tree exists is contained in [5, Lemma 3.6], and it can be
constructed in timeO

(
n2

)
using the Minimum Spanning Tree algorithm. This implementation is done in [20,

Section 3.2]. We then apply the CKR random partition with diameter∆ as follows: Instead of applying it to
the points inX, we apply it to the verticesu of H for which

∆(u) ≤ ∆
n2

< ∆
(
parent(u)

)
. (12)

Each such vertexu represents all the subtree rooted atu (in particular, we can choose arbitrary leaf descen-
dants to calculate distances — these distances are calculated using the metricdX), and they are all assigned
to the same cluster asu in the resulting partition. This is essentially an application of the algorithm to an

8
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appropriate quotient ofX (see the discussion in [27]). We actually apply a weighted version of the CKR
decomposition in the spirit of [25], in which, in the choice of random permutation, each vertexu as above
is chosen with probability proportional to the number of leaves which are descendants ofu (note that this
change alters the guarantee of the partition only slightly:We will obtain clusters bounded by

(
1+ 1/n2

)
∆,

and in the estimate on the padding probability the radii of the balls is changed by only a factor of (1± 1/n)).
We also do not process each scale, but rather work in “event driven mode”: Vertices ofH are put in a non
decreasing order according to their labels in a queue. Each time we pop a new vertexu, and partition the
spaces at all the scales in the range [∆(u), n2∆(u)], for which we have not done so already. In doing so
we effectively skip “irrelevant” scales. To estimate the runningtime of this procedure note that the CKR
decomposition at scale 8j takes timeO

(
m2

i

)
, wheremi is the number of verticesu of H satisfying (12) with

∆ = 8i . Note also that each vertex ofH participates in at mostO(logn) such CKR decompositions, so∑
i mi = O(n logn). Hence the running time of the sampling procedure in Lemma 4.2 is up to a constant

factor
∑

i m2
i = O

(
n2 logn

)
.

The Ramsey chain in Lemma 4.2 will be used in two different ways in the ensuing constructions. For our
approximate distance oracle data structure we will just need that the ultrametricρ j is defined onX j−1 (and
not all of X). Thus, by the above argument, and Lemma 4.2, the expected preprocessing time in this case is
O

(
E

∑s−1
j=1 |X j |2 logΦ(X j)

)
= O

(
n2+1/k logn

)
and the expected storage space isO

(
E

∑s−1
j=1 |X j |

)
= O

(
n1+1/k

)
.

For the purpose of our approximate ranking data structure wewill really need the metricsρ j to be defined
on all of X. Thus in this case the expected preprocessing time will beO

(
n2 logn · Es

)
= O

(
kn2+1/k logn

)
,

and the expected storage space isO (n · Es) = O
(
kn1+1/k

)
.

1) Approximate distance oracles. Our improved approximate distance oracle is contained in Theorem 1.2,
which we now prove.

Proof of Theorem 1.2.We shall use the notation in the statement of Lemma 4.2. LetT j = (V j ,E j) and
∆ j : V j → (0,∞) be the HST representation of the ultrametricρ j (which was actually constructed explicitly
in the proofs of Lemma 2.1 and Lemma 4.2). The usefulness of the tree representation stems from the fact
that it very easy to handle algorithmically. In particular there exists a simple scheme that takes a tree and
preprocesses it in linear time so that it is possible to compute the least common ancestor of two given nodes
in constant time (see [21, 6]). Hence, we can preprocess any 1-HST so that the distance between any two
points can be computed inO(1) time.

For every pointx ∈ X let ix be the largest index for whichx ∈ Xix−1. Thus, in particular,x ∈ Yix. We
further maintain for everyx ∈ X a vector (in the sense of data-structures)vecx of lengthix (with O(1) time
direct access), such that fori ∈ {0, . . . , ix−1}, vecx[i] is a pointer to the leaf representingx in Ti . Now, given
a queryx, y ∈ X assume without loss of generality thatix ≤ iy. It follows that x, y ∈ Xix−1. We locate the
leaves ˆx = vecx[ix], and ŷ = vecy[ix] in Tix, and then computelca (x̂, ŷ) to obtain anO(k) approximation
to dX(x, y). Observe that the above data structure only requiresρ j to be defined onX j−1 (and satisfying the
conclusion of Lemma 4.2 forx, y ∈ X j−1). The expected preprocessing time isO

(
n2+1/k logn

)
. The size of

the above data structure isO
(∑s

j=0 |X j |
)
, which is in expectationO

(
n1+1/k

)
. �

Remark 4.3. Using the distributed labeling for the least common ancestor operation on trees of Peleg [29],
the procedure described in the proof of Theorem 1.2 can be easily converted to adistance labelingdata
structure (we refer to [31, Section 3.5] for a description ofthis problem). We shall not pursue this direction
here, since while the resulting data structure is non-trivial, it does not seem to improve over the known
distance labeling schema [31].
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2) Approximate ranking. Before passing to ourα-approximate ranking data structure (Theorem 1.3) we
recall the setting of the problem. Thinking ofX as a metric on{1, . . . , n}, and fixingα > 1, the goal here is
to associate with everyx ∈ X a permutationπ(x) of {1, . . . , n} such thatdX

(
x, π(x)(i)

)
≤ α · dX

(
x, π(x)( j)

)
for

every 1≤ i ≤ j ≤ n. This relaxation of the exact proximity ranking induced by the metricdX allows us to
gain storage efficiency, while enabling fast access to this data. By fast access we mean that we can preform
the following tasks:

1. Given an elementx ∈ X, andi ∈ {1, . . . , n}, find π(x)(i) in O(1) time.
2. Given an elementx ∈ X andy ∈ X, find numberi ∈ {1, . . . , n}, such thatπ(x)(i) = y, in O(1) time.
Before passing to the proof of Theorem 1.3 we require the following lemma.

Lemma 4.3. Let T = (V,E) be a rooted tree with n leaves. For v∈ V, let LT(v) be the set of leaves in
the subtree rooted at v, and denoteℓT(v) = |LT(v)|. Then there exists a data structure, that we callSize-
Ancestor, which can be preprocessed in time O(n), and answers in time O(1) the following query: Given
ℓ ∈ N and a leaf x∈ V, find an ancestor u of x such thatℓT(u) < ℓ ≤ ℓ(parent(u)). Here we use the
conventionℓ(parent(root))= ∞.

To the best of our knowledge, the data structure described inLemma 4.3 has not been previously studied.
We therefore include a proof of Lemma 4.3 in Appendix A, and proceed at this point to conclude the proof
of Theorem 1.3.

Proof of Theorem 1.3.We shall use the notation in the statement of Lemma 4.2. LetT j = (V j ,E j) and
∆ j : V → (0,∞) be the HST representation of the ultrametricρ j . We may assume without loss of generality
that each of these trees is binary and does not contain a vertex which has only one child. Before presenting
the actual implementation of the data structure, let us explicitly describe the permutationπ(x) that the data
structure will use. For every internal vertexv ∈ V j assign arbitrarily the value 0 to one of its children, and the
value 1 to the other. This induces a unique (lexicographical) order on the leaves ofT j . Next, fix x ∈ X and
ix such thatx ∈ Yix. The permutationπ(x) is defined as follows. Starting from the leafx in Tix, we scan the
path fromx to the root ofTix. On the way, when we reach a vertexu from its childv, let w denote the sibling
of v, i.e. the other child ofu. We next output all the leafs which are descendants ofw according to the total
order described above. Continuing in this manner until we reach the root ofTix we obtain a permutationπ(x)

of X.
We claim that the permutationπ(x) constructed above is anO(k)-approximation to the proximity ranking

induced byx. Indeed, fixy, z ∈ X such thatCk · dX(x, y) < dX(x, z), whereC is a large enough absolute
constant. We claim thatz will appear aftery in the order induced byπ(x). This is true since the distances
from x are preserved up to a factor ofO(k) in the ultrametricTix. Thus for large enoughC we are guaranteed
that dTix

(x, y) < dTix
(x, z), and thereforelcaTix

(x, z) is a proper ancestor oflcaTix
(x, y). Hence in the order

just describe above,y will be scanned beforez.
We now turn to the description of the actual data structure, which is an enhancement of the data structure

constructed in the proof of Theorem 1.2. As in the proof of Theorem 1.2 our data structure will consist of
a “vector of the treesT j”, where we maintain for eachx ∈ X a pointer to the leaf representingx in each
T j . The remaining description of our data structure will deal with each treeT j separately. First of all, with
each vertexv ∈ T j we also store the number of leaves which are the descendants of v, i.e. |LT j (v)| (note that
all these numbers can be computed in timeO(n) time using, say, depth-first search). With each leaf ofT j

we also store its index in the order described above, and there is a reverse indexing by a vector that allows,
given an index, to find the corresponding vertex inO(1) time. Each internal vertex contains a pointer to its
leftmost (smallest) and rightmost (largest) descendant leaves. This data structure can be clearly constructed
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in O(n) time using, e.g., depth-first transversal of the tree. We now give details on how to answer the required
queries using the “ammunition” we have listed above.

1. Using Lemma 4.3, find an ancestorv of x such thatℓT j (v) < i ≤ ℓT j (parent(v)) in O(1) time. Let
u = parent(v) (note thatv can not be the root). Letw be the sibling ofv (i.e. the other child ofu).
Next we pick the leaf numbered

(
i − ℓT j (v)

)
+ left(w) − 1, where left(w) is the index to the leftmost

descendant ofw.

2. Findu = lca(x, y) (in O(1) time, using [21, 6]). Letv andw be the children ofu, which are ancestors
of x andy, respectively. ReturnℓT j (v) + ind(y) − left(w), where ind(y) is the index ofy in the total
order of the leaves of the tree.

This concludes the construction of our approximate rankingdata structure. Because we need to have
the ultrametricρ j defined on all ofX, the preprocessing time isO

(
kn2+1/k logn

)
and the storage size is

O
(
kn1+1/k

)
, as required. �

Remark 4.4. Our approximate ranking data structure can also be used in a nearest neighbor heuristic called
“Orchard Algorithm” [28] (see also [13, Sec. 3.2]). In this algorithm the vanilla heuristic can be used to
obtain the exact proximity ranking, and requires storageΩ

(
n2

)
. Using approximate ranking the storage

requirement can be significantly improved, though the queryperformance is somewhat weaker due to the
inaccuracy of the ranking lists.

3) Computing the Lipschitz constant. Here we describe a data structure for computing the Lipschitz
constant of a functionf : X → Y, where (Y, dY) is an arbitrary metric space. When (X, dX) is a doubling
metric space(see [22]), this problem was studied in [20]. In what followswe shall always assume thatf
is given inoracle form, i.e. it is encoded in such a way that we can compute its value on a given point in
constant time.

Lemma 4.4. There is an algorithm that, given an n-point ultrametric(U, dU) defined by the HST T= (V,E)
(in particular U is the set of leaves of T), an arbitrary metric space(Y, dY), and a mapping f: U → Y,
returns in time O(n) a number A≥ 0 satisfying‖ f ‖Lip ≥ A ≥ 1

16 · ‖ f ‖Lip .

Proof. We assume thatT is 4-HST. As remarked in the beginning of Section 4, this can be achieved by
distorting the distances inU by a factor of at most 4, inO(n) time. We also assume that the treeT stores for
every vertexv ∈ V an arbitrary leafxv ∈ U which is a descendant ofv (this can be easily computed inO(n)
time). For a vertexu ∈ V we denote by∆(u) its label (i.e.∀ x, y ∈ U, dU(x, y) = ∆(lca(x, y))).

The algorithm is as follows:

Lip-UM(T, f )
A← 0
For every vertexu ∈ T do

Let v1, . . . vr be the children ofu.

A← max

{
A,max2≤i≤r

dY

(
f (xv1), f (xvi )

)

∆(u)

}

OutputA.

11
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Clearly the algorithm runs in linear time (the total number of vertices in the tree isO(n) and each vertex
is visited at most twice). Furthermore, by construction thealgorithm outputsA ≤ ‖ f ‖Lip . It remains prove a
lower bound onA. Let x1, x2 ∈ U be such that‖ f ‖Lip =

dY( f (x1), f (x2))
dU (x1,x2) , and denoteu = lca(x, y). Let w1,w2 be

the children ofu such thatx1 ∈ LT(w1), andx2 ∈ LT(w2). Let v1 be the “first child” ofu as ordered by the
algorithm Lip-UM (notice that this vertex has special role). Then

A ≥ max

{
dY( f (xw1), f (xv1))

∆(u)
,
dY( f (xw2), f (xv1))

∆(u)

}

≥ 1
2
·

dY( f (xw1), f (xw2))

∆(u)

≥ 1
2
· dY( f (x1), f (x2)) − diam(f (LT (w1))) − diam(f (LT (w2)))

∆(u)
.

If max {diam(f (LT (w1))), diam(f (LT (w1)))} ≤ 1
4dY( f (x1), f (x2)), then we conclude that

A ≥ 1
4
· dY( f (x1), f (x2))

∆(u)
,

as needed. Otherwise, assuming that diam(f (LT (w1))) > 1
4 · dY( f (x1), f (x2)), there existz, z′ ∈ LT(w1)

such that
dY( f (z), f (z′))

dU(z, z′)
>

1
4 · dY( f (x1), f (x2))

∆(u)/4
= ‖ f ‖Lip ,

which is a contradiction. �

Theorem 4.5. Given k≥ 1, any n-point metric space(X, dX) can be preprocessed in time O
(
n2+1/k logn

)
,

yielding a data structure requiring storage O
(
n1+1/k

)
which can answer in O

(
n1+1/k

)
time the following

query: Given a metric space(Y, dY) and a mapping f: X → Y, compute a value A≥ 0, such that‖ f ‖Lip ≥
A ≥ ‖ f ‖Lip/O(k).

Proof. The preprocessing is simply computing the trees{T j}sj=1 as in the proof of Theorem 1.2. Denotes the
resulting ultrametrics by (U1, ρ1), . . . , (Us, ρs). Given f : X→ Y, represent it asgi : Ui → Y (as a mapping
gi is the same mapping asf ). Use Lemma 4.4 to compute an estimateAi of ‖gi‖Lip, and returnA≔ maxi Ai.
Since all the distances inUi dominate the distances inX, ‖ f ‖Lip ≥ ‖gi‖Lip ≥ Ai, so ‖ f ‖Lip ≥ A. On the
other hand, letx, y ∈ X be such that‖ f ‖Lip =

dY( f (x), f (y))
dX(x,y) . By Lemma 4.2, there existsi ∈ {1, . . . , s} such

thatdUi (x, y) ≤ O(k) · dX(x, y), and hence‖gi‖Lip ≥ ‖ f ‖Lip/O(k), And soA ≥ 1
16 · ‖gi‖Lip ≥ ‖ f ‖Lip/O(k), as

required. Since we once more only need that the ultrametricρ j is defined onX j−1 and not on all ofX, the
preprocessing time and storage space are the same as in Theorem 1.2. By Lemma 4.2 the running time is
O

(∑s−1
j=1 |X j |

)
= O

(
n1+1/k

)
(we have aO(|X j |) time computation of the Lipschitz constant on eachX j). �

5 Concluding Remarks

An s-well separated pair decomposition(WSPD) of ann-point metric space (X, dX) is a collection of pair
of subsets{(Ai , Bi)}Mi=1, Ai , Bi ⊂ X, such that

1. ∀x, y ∈ X if x , y then (x, y) ∈ ⋃M
i=1(Ai × Bi).

2. For alli , j, (Ai × Bi) ∩ (A j × B j) = ∅.

12
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3. For alli ∈ {1, . . . ,M}, dX(Ai , Bi) ≥ s ·max{diam(Ai), diam(Bi)}.

The notion of s-WSPD was first defined for Euclidean spaces in an influential paper of Callahan and
Kosaraju [11], where it was shown that forn-point subsets of a fixed dimensional Euclidean space there
exists such a collection of sizeO(n) that can be constructed inO(n logn) time. Subsequently, this concept
has been used in many geometric algorithms (e.g. [32, 10]), and is today considered to be a basic tool in com-
putational geometry. Recently the definition and the efficient construction of WSPD were generalized to the
more abstract setting of doubling metrics [30, 20]. These papers have further demonstrated the usefulness
of this tool (see also [18] for a mathematical application).

It would be clearly desirable to have a notion similar to WSPDin general metrics. However, as for-
mulated above, this is impossible to do in “high dimensional” spaces, since any 2-WSPD of ann-point
equilateral space must be of sizeΩ(n2). The present paper suggests that Ramsey partitions might be a par-
tial replacement of this notion which works for arbitrary metric spaces. Indeed, among the applications of
WSPD in fixed dimensional metrics are approximate ranking (though this application does not seem to have
appeared in print — it was pointed out to us by Sariel Har-Peled), approximate distance oracles [19, 20],
spanners [30, 20], and computation of the Lipschitz constant [20]. These applications have been obtained
for general metrics using Ramsey partitions in the present paper (spanners were not discussed here since our
approach does not seem to beat previously known constructions). We believe that this direction deserves
further scrutiny, as there are more applications of WSPD which might be transferable to general metrics
using Ramsey partitions.

Acknowledgments. We are grateful to Sariel Har-Peled for letting us use here his insights on the approx-
imate ranking problem. We also thank Yair Bartal for helpfuldiscussions.

Appendices

A The Size-Ancestor data structure

In this appendix we prove Lemma 4.3. Without loss of generality we assume that the treeT does not contain
vertices with only one child. Indeed, such vertices will never be returned as an answer for a query, and thus
can be eliminated inO(n) time in a preprocessing step.

Our data structure is composed in a modular way of two different data structures, the first of which is
described in the following lemma, while the second is discussed in the proof of Lemma 4.3 that will follow.

Lemma A.1. Fix m ∈ N, and let T be as in Lemma 4.3. Then there exists a data structure which can
be preprocessed in time O

(
n+ n logn

m

)
, and answers in time O(1) the following query: Givenℓ ∈ N and

a leaf x ∈ V, find an ancestor u of x such thatℓT(u) < ℓm ≤ ℓ(parent(u)). Here we use the convention
ℓ(parent(root))= ∞.

Proof. Denote byX the set of leaves ofT. For every internal vertexv ∈ V, order its children non-increasingly
according to the number of leaves in the subtrees rooted at them. Such a choice of labels induces a unique
total order onX (the lexicographic order). Denote this order by4 and let f : {1, . . . , n} → X be the unique
increasing map in the total order4. For everyv ∈ V, f −1 (LT(v)) is an interval of integers. Moreover, the
set of intervals

{
f −1 (LT(v)) : v ∈ V

}
forms a laminar set, i.e. for every pair of intervals in this set either

one is contained in the other, or they are disjoint. For everyv ∈ V write f −1 (LT(v)) = Iv = [Av, Bv], where
Av, Bv ∈ N andAv ≤ Bv. For i ∈ {1, . . . , ⌊n/m⌋} and j ∈ {1, . . . , ⌈n/(im)⌉} let Fi( j) be the set of vertices
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v ∈ V such that|Iv| ≥ im, Iv ∩ [( j − 1)im + 1, jim] , ∅, and there is no descendant ofv satisfying these two
conditions. Since at most two disjoint intervals of length at leastim can intersect a given interval of length
im, we see that for alli, j, |Fi( j)| ≤ 2.

Claim A.2. Let x∈ X be a leaf of T, andℓ ∈ N. Let u∈ V be the least ancestor of x for whichℓT(u) ≥ ℓm.
Then

u ∈
{

lca(x, v) : v ∈ Fℓ

(⌈
f (x)
ℓm

⌉)}
.

Proof. If u ∈ Fℓ

(⌈
f (x)
ℓm

⌉)
then sinceu = lca(x, u) there is nothing to prove. If on the other handu < Fℓ

(⌈
f (x)
ℓm

⌉)

then since we are assuming that thatℓT(u) ≥ ℓm, and Iu ∩
[(⌈

f (x)
ℓm

⌉
− 1

)
ℓm+ 1,

⌈
f (x)
ℓm

⌉
ℓm

]
, ∅ (because

f (x) ∈ Iu), it follows thatu has a descendantv in Fℓ

(⌈
f (x)
ℓm

⌉)
. Thusu = lca(x, v), by the fact thatanyancestor

w of v satisfiesℓT(w) ≥ ℓT(v) ≥ ℓm, and the minimality ofu. �

The preprocessing of the data structure begins with ordering the children of vertices non-increasingly
according to the number of leaves in their subtrees. The following algorithm achieves it in linear time.

SORT-CHILDREN(u)
Compute{ℓT(u)}u∈V using depth first search.
SortV non-increasingly according toℓT(·) (use bucket sort- see [15, Ch. 9]).
Let (vi)i be the setV sorted as above.
Initialize ∀u ∈ V, the listChildrenSortedListu = ∅.
For i = 1 to |V| do

Add vi to the end ofChildrenSortedListparent(vi ).

Computing f , and the intervals{Iu}u∈V is now done by a depth first search ofT that respects the above
order of the children. We next compute{Fi( j) : i ∈ {1, . . . , ⌊n/m⌋}, j ∈ {1, . . . , ⌈n/(im)⌉} using the following
algorithm:

SUBTREE-COUNT(u)
Let v1, . . . , vr be the children ofu with |Iv1 | ≥ |Iv2 | ≥ · · · ≥ |Ivr |.
For i ← ⌊|Iu|/m⌋ down to

⌊|Iv1 |/m
⌋
+ 1 do

For j ← ⌊Au/(im)⌋ to ⌈Bu/(im)⌉ do
Add u to Fi( j)

For h← 1 to r − 1 do
For i ←

⌊
|Ivh |/m

⌋
down to

⌊
|Ivh+1 |/m

⌋
+ 1 do

For j ← ⌈Bvh/(im)⌉ + 1 to ⌈Bu/(im)⌉ do
Add u to Fi( j)

For h← 1 to r do call SUBTREE-COUNT(vh).

Here is an informal explanation of the correctness of this algorithm. The only relevant setsFi(·) which will
contain the vertexu ∈ V are those in the rangei ∈ [⌊|Ivr |/m⌋+1, ⌊|Iu|/m⌋]. Above this rangeIu does not meet
the size constraint, and below this range anyFi( j) which intersectsIu must also intersect one of the children
of u, which also satisfies the size constraint, in which case one of the descendants ofu will be in Fi( j). In
the aforementioned range, we addu to Fi( j) only for j such that the interval [(j − 1)im + 1, jim] does not
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intersect one of the children ofu in a set of size larger thanim. Here we use the fact that the intervals of the
children are sorted in non-increasing order according to their size. Regarding running time, this reasoning
implies that each vertex ofT, and each entry inFi( j), is accessed by this algorithm only a constant number
of times, and each access involves only constant number of computation steps. So the running time is

O

(
n+

⌊n/m⌋∑

i=1

⌈n/(im)⌉∑

j=1

|Fi( j)|
)
= O

(
n+

n logn
m

)
.

We conclude with the query procedure. Given a queryx ∈ X andℓ ∈ N, accessFℓ

(⌈
f (x)
ℓ

⌉)
in O(1) time.

Next, for eachv ∈ Fℓ

(⌈
f (x)
ℓ

⌉)
, check whetherlca(x, v) is the required vertex (we are thus using here also the

data structure for computing thelca of [21, 6]. Observe also that since|Fi( j)| ≤ 2, we only have a constant
number of checks to do). By Claim A.2 this will yield the required result. �

By settingm = 1 in Lemma A.1, we obtain a data structure for theSize-Ancestor problem withO(1)
query time, butO(n logn) preprocessing time. To improve upon this, we setm = Θ(logn) in Lemma A.1,
and deal with the resulting gaps by enumerating all the possible ways in which the remainingm− 1 leaves
can be added to the tree. Exact details are given below.

Proof of Lemma 4.3.Fix m = ⌊(logn)/4⌋. Each subsetA ⊆ {0, . . . ,m− 1} is represented as a number #A ∈
{0, . . . , 2m − 1} by #A =

∑
i∈A 2i . We next construct in memory a vectorenum of size 2m, whereenum[#A]

is a vector of sizem, with integer index in the range{1, . . . ,m}, such thatenum[#A][ i] = |A∩ {0, . . . , i − 1}|.
Clearlyenum can be constructed inO(2mm) = o(n) time.

For each vertexu we compute and store:
• depth(u) which is the edge’s distance from the root tou.
• ℓT(u), the number of of leaves in the subtree rooted atu.
• The number #Au, where

Au =
{
k ∈ {0, . . . ,m− 1} : u has an ancestor with exactlyℓT(u) + k descendant leaves

}
.

We also apply the level ancestor data-structure, that afterO(n) preprocessing time, answers in constant time
queries of the form: Given a vertexu and an integerd, find an ancestor ofu at depthd (if it exists) (such a
data structure is constructed in [7]). Lastly, we use the data structure from Lemma A.1

With all this machinary in place, a query for the least ancestor of a leaf x having at leastℓ leaves
is answered in constant time as follows. First computeq = ⌊ℓ/m⌋. Apply a query to the data structure
of Lemma A.1, withx andq, and obtainu, the least ancestor ofx such thatℓT(u) ≥ qm. If ℓT(u) ≥ ℓ

then u is the least ancestor withℓ leaves, so the data-structure returnsu. Otherwise,ℓT(u) < ℓ, and let
a = enum[#Au][ℓ − ℓT(u)]. Note that depth(u) − a is the depth of the least ancestor ofu having at leastℓ
leaves, thus the query uses the level ancestor data-structure to return this ancestor. Clearly the whole query
takes a constant time.

It remains to argue that the data structure can be preprocessed in linear time. We already argued about
most parts of the data structure, andℓT(u) and depth(u) are easy to compute in linear time. Thus we are
left with computing #Au for each vertexu. This is done using a top-down scan of the tree (e.g., depth first
search). The root is assigned with 1. Each non-root vertexu, whose parent isv, is assigned

#Au←

1 if ℓT(v) ≥ ℓT(u) +m

#Av · 2ℓT (v)−ℓT (u) + 1 (mod 2m) otherwise.
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It is clear that this indeed computes #Au. The relevant exponents are computed in advance and stored in a
lookup table. �

Remark A.1. This data structure can be modified in a straightforward way to answer queries to the least
ancestor of a given size (in terms of the number of vertices inits subtree). It is also easy to extend it to
queries which are non-leaf vertices.

B The metric Ramsey theorem implies the existence of Ramsey partitions

In this appendix we complete the discussion in Section 2 by showing that the metric Ramsey theorem implies
the existence of good Ramsey partitions. The results here are not otherwise used in this paper.

Proposition B.1. Fix α ≥ 1 andψ ∈ (0, 1), and assume that every n-point metric space has a subset of size
nψ which isα-equivalent to an ultrametric. Then every n-point metric space (X, dX) admits a distribution
over partition trees{Rk}∞k=0 such that for every x∈ X,

Pr

[
∀ k ∈ N, BX

(
x,

1
96α
· 8−k diam(X)

)
⊆ Rk(x)

]
≥ 1− ψ

n1−ψ .

Proof. Let (X, dX) be ann-point metric space. The argument starts out similarly to the proof of Lemma 4.2.
Using the assumptions and Lemma 4.1 iteratively, we find a decreasing chain of subsetsX = X0 % X1 %

X2 · · · % Xs = ∅ and ultrametricsρ1, . . . , ρs on X, such that if we denoteYj = X j−1 \ X j then |Yj | ≥ |X j−1|ψ,
for x, y ∈ X, ρ j(x, y) ≥ dX(x, y), and forx ∈ X, y ∈ Yj we haveρ j(x, y) ≤ 6αdX(x, y). As in the proof of
Lemma 4.2, it follows by induction thats≤ 1

1−ψ · n
1−ψ.

By [5, Lemma 3.5] we may assume that the ultrametricρ j can be represented by an exact 2-HSTT j =

(V j ,E j), with vertex labels∆T j , at the expense of replacing the factor 6 above by 12. Let∆ j be the label of
the root ofT j , and denote fork ∈ N, Λk

j = {v ∈ V j : ∆T j (v) = 2−k∆ j}. For everyv ∈ V j let L j(v) be the

leaves ofT j which are descendants ofv. ThusPk
j ≔

{
L j(v) : v ∈ Λk

j

}
is a 2−k∆ j bounded partition ofX

(boundedness is in the metricdX). Fix x ∈ Yj and letv be the unique ancestor ofX in Λk
j . If z ∈ X is such

thatdX(x, z) ≤ 1
12α · 2

−k∆ j then∆T j

(
lcaT j (x, z)

)
= ρ j(x, z) ≤ 2−k∆ j . It follows thatz is a descendant ofv, so

thatz ∈Pk
j (x) = L j(v). ThusPk

j (x) ⊇ BX

(
x, 1

12α · 2
−k∆ j

)
.

Passing to powers of 8 (i.e. choosing for eachk the integerℓ such that 8−ℓ−1 diam(x) < 2−k∆ j ≤
8−ℓ diam(X) and indexing the above partitions usingℓ instead ofk), we have thus shown that for every
j ∈ {1, . . . , s} there is a partition tree

{
R

j
k

}∞
k=0

such that for everyx ∈ Yj we have for allk,

BX

(
x,

1
96α
· 8−k diam(X)

)
⊆ R

j
k(x).

Since the setsY1, . . . ,Ys coverX, ands≤ n1−ψ

1−ψ , the required distribution over partition trees can be obtained

by choosing one of the partition trees
{
R1

k

}∞
k=0

, . . . ,
{
R

s
k

}∞
k=0

uniformly at random. �

Remark B.1. Motivated by the re-weighting argument in [12], it is possible to improve the lower bound
in Proposition B.1 forψ in a certain range. We shall now sketch this argument. It should be remarked,
however, that there are several variants of this re-weighting procedure (like re-weighting again at each step),
so it might be possible to slightly improve upon PropositionB.1 for a larger range ofψ. We did not attempt
to optimize this argument here.
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Fix η ∈ (0, 1) to be determined presently, and let (X, dX) be ann-point metric space. Duplicate each
point in X nη times, obtaining a (semi-) metric spaceX′ with n1+η points (this can be made into a metric
by applying an arbitrarily small perturbation). We shall define inductively a decreasing chain of subsets
X′ = X′0 % X′1 % X′2 % · · · as follows. Forx ∈ X, let hi(x) be the number of copies ofx in X′i (thus
h0(x) = nη). Having definedX′i , let Yi+1 ⊆ X′i be a subset which isα-equivalent to an ultrametric and
|Yi+1| ≥ |X′i |

ψ. We then defineX′i+1 via

hi+1(x) =


⌊hi(x)/2⌋ there exists a copy ofx in Yi+1

hi(x) otherwise.

Continue this procedure until we arrive at the empty set. Observe that

|X′i+1| ≤ |X
′
i | −

1
2
|X′i |

ψ ≤ |X′i |
(
1− 1

2n(1+η)(1−ψ)

)
.

Thus |X′i | ≤ n1+η ·
(
1− 1

2n(1+η)(1−ψ)

)i−1
. It follows that this procedure terminates afterO

(
n(1+η)(1−ψ) logn

)

steps, and by construction each point ofX appears inΘ
(
η logn

)
of the subsetsYi. As in the proof of

Proposition B.1, by selecting each of theYi uniformly at random we get a distribution over partition trees
{Rk}∞k=0 such that for everyx ∈ X,

Pr

[
∀ k ∈ N, BX

(
x,

1
96α
· 8−k diam(X)

)
⊆ Rk(x)

]
≥ Ω

(
η

n(1+η)(1−ψ)

)
.

Optimizing overη ∈ (0, 1), we see that as long as 1− ψ > 1
logn we can chooseη = 1

(1−ψ) logn, yielding the
probabilistic estimate

Pr

[
∀ k ∈ N, BX

(
x,

1
96α
· 8−k diam(X)

)
⊆ Rk(x)

]
≥ Ω

(
1

(1− ψ) logn
· 1

n1−ψ

)
.

This estimate is better than Proposition B.1 when1
logn < 1− ψ < O

(
1√
logn

)
.
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[16] P. Erdős. Extremal problems in graph theory. InTheory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963),
pages 29–36. Publ. House Czechoslovak Acad. Sci., Prague, 1964.

[17] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics.J. Comput.
System Sci., 69(3):485–497, 2004.

[18] C. Fefferman and B. Klartag. FittingCm smooth functions to data I. Preprint, availabe at
http://www.math.princeton.edu/facultypapers/Fefferman/FittingData_Part_I.pdf , 2005.

[19] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. Smid. Approximate distance oracles for geometric graphs. In
SODA ’02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 828–837, Philadel-
phia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

[20] S. Har-Peled and M. Mendel. Fast construction of nets inlow dimensional metrics, and their applications. InSCG ’05:
Proceedings of the twenty-first annual symposium on Computational geometry, pages 150–158, New York, NY, USA, 2005.
ACM Press. Available athttp://arxiv.org/abs/cs.DS/0409057, to appear in SIAM J. Computing.

[21] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.SIAM J. Comput., 13(2):338–355, 1984.

[22] J. Heinonen.Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.

[23] P. Indyk. Nearest neighbors in high-dimensional spaces. InHandbook of discrete and computational geometry, second edition,
pages 877–892. CRC Press, Inc., Boca Raton, FL, USA, 2004.

[24] R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: A new embedding method for finite metrics.Geom.
Funct. Anal., 15(4):839–858, 2005.

[25] J. R. Lee and A. Naor. Extending Lipschitz functions viarandom metric partitions.Invent. Math., 160(1):59–95, 2005.
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